Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.21.496940

ABSTRACT

The Endoplasmic Reticulum (ER) glycoprotein folding Quality Control (ERQC) machinery aids folding of glycoproteins in the ER. Misfolded glycoprotein recognition and ER-retention is mediated by the ERQC checkpoint enzyme, the 170 kDa UDP-Glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. Towards the generation of selective UGGT inhibitors, we determined the crystal structures of the catalytic domain of Chaetomium thermophilum UGGT ( Ct UGGT GT24 ), alone and in complex with the inhibitor UDP-2-deoxy-2-fluoro-D-glucose (U2F). Using the Ct UGGT GT24 crystals, we carried out a fragment-based lead discovery screen via X-ray crystallography and discovered that the small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a Ct UGGT GT24 ‘WY’ conserved surface motif that is not present in other GT24 family glycosyltransferases. The 5M-8OH-Q molecule has a 613 µ M binding affinity for human UGGT1 in vitro as measured by saturation transfer difference NMR spectroscopy. The 5M-8OH-Q molecule inhibits both human UGGT1and UGGT2 activity at concentrations higher than 750 µ M in modified HEK293-6E cells. The compound is toxic in cellula and in planta at concentrations higher than 1 mM. A few off-target effects are also observed upon 5M-8OH-Q treatment. Based on an in silico model of the interaction between UGGT and its substrate N -glycan, the 5M-8OH-Q molecule likely works as a competitive inhibitor, binding to the site of recognition of the first GlcNAc residue of the substrate N -glycan. Significance Statement When a candidate drug target is the product of a housekeeping gene - i.e. it is important for the normal functioning of the healthy cell – availability of inhibitors for tests and assays is of paramount importance. One such housekeeping protein is UGGT, the enzyme that makes sure that only correctly folded glycoproteins can leave the endoplasmic reticulum for further trafficking through the secretory pathway. UGGT is a potential drug target against viruses, in certain instances of congenital rare disease, and against some cancers, but no UGGT inhibitors are known yet. We discovered and describe here a small molecule that binds human UGGT1 in vitro and inhibits both isoforms of human UGGT in cellula . The compound paves the way to testing of UGGT inhibition as a potential pharmacological strategy in a number of medical contexts.


Subject(s)
Glucose Intolerance , Neoplasms , Rare Diseases
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.30.454436

ABSTRACT

The pandemic caused by the SARS-CoV-2 has created the need of compounds able to interfere with the biological processes exploited by the virus. Doxycycline, with its pleiotropic effects, including anti-viral activity, has been proposed as a therapeutic candidate for COVID-19 and about twenty clinical trials have started since the beginning of the pandemic. To gain information on the activity of doxycycline against SARS-CoV-2 infection and clarify some of the conflicting clinical data published, we designed in vitro binding tests and infection studies with a pseudotyped virus expressing the spike protein, as well as a clinically isolated SARS-CoV-2 strain. Doxycycline inhibited the transduction of the pseudotyped virus in Vero E6 and HEK-293 T cells stably expressing human receptor angiotensin-converting enzyme 2 but did not affect the entry and replication of SARS-CoV-2. Although this conclusion is apparently disappointing, it is paradigmatic of an experimental approach aimed at developing an integrated multidisciplinary platform. To avoid wasting precious time and resources we believe very stringent experimental criteria are needed in the preclinical phase, including infectious studies with SARS-CoV-2 in the platform before moving on to [failed] clinical trials. Author Summary The pandemic caused by the SARS-CoV-2 virus has created a completely unusual situation in rapidly searching for compounds able to interfere with the biological processes exploited by the virus. This new scenario has substantially changed the timing of drug development which has also resulted in the generation of controversial results, proving that the transition from computational screening to the clinical application requires great caution and careful studies. It is therefore necessary to establish new paradigms for evaluating the efficacy of a potential active molecule. We set up a preclinical platform aimed at identifying molecules active against SARS-CoV-2 infection developing a multidisciplinary approach based on very stringent experimental criteria, comprising in-silico studies, in vitro binding tests and infection studies with pseudovirus expressing the spike protein as well as clinically isolated SARS-CoV-2 strains. We focused our attention on doxycycline which has been suggested as potential therapeutic candidate for treating COVID-19 and is currently employed in about twenty clinical trials. Doxycycline resulted effective in inhibiting the transduction of pseudovirus but it did not affect the entry and replication of SARS-CoV-2. The results obtained underline the need to define more stringent and controlled pharmacological approaches before wasting precious time and resources with clinical trials.


Subject(s)
COVID-19
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.13493v4

ABSTRACT

The steep climbing of victims caused by the new coronavirus disease 2019 (COVID-19) throughout the planet is sparking an unprecedented effort to identify effective therapeutic regimens to tackle the pandemic. The SARS-CoV-2 virus is known to gain entry into various cell types through the binding of one of its surface proteins (spike) to the host Angiotensin-Converting Enzyme 2 (ACE2). Thus, spike-ACE2 interaction represents a major target for vaccines and antiviral drugs. A novel method has been recently described by some of the authors to pharmacologically downregulate the expression of target proteins at the post-translational level. This technology builds on computational advancements in the simulation of folding mechanisms to rationally block protein expression by targeting folding intermediates, hence hampering the folding process. Here, we report the all-atom simulations of the entire sequence of events underlying the folding pathway of ACE2. Our data revealed the existence of a folding intermediate showing two druggable pockets hidden in the native conformation. Both pockets were targeted by a virtual screening repurposing campaign aimed at quickly identifying drugs capable to decrease the expression of ACE2. We identified four compounds capable of lowering ACE2 expression in Vero cells in a dose-dependent fashion. All these molecules were found to inhibit the entry into cells of a pseudotyped retrovirus exposing the SARS-CoV-2 spike protein. Importantly, the antiviral activity has been tested against live SARS-CoV-2 (MEX-BC2/2020 strain). One of the selected drugs (Artefenomel) could completely prevent cytopathic effects induced by the presence of the virus, thus showing antiviral activity against SARS-CoV-2. Ongoing studies are further evaluating the possibility of repurposing these drugs for the treatment of COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL